--- a/src/sage/rings/function_field/function_field.py +++ b/src/sage/rings/function_field/function_field.py @@ -111,22 +111,21 @@ Function fields over the algebraic field are supported:: sage: m = L.completion(pl, prec=5) sage: m(x) I + s + O(s^5) - sage: m(y) + sage: m(y) # long time (4s) -2*s + (-4 - I)*s^2 + (-15 - 4*I)*s^3 + (-75 - 23*I)*s^4 + (-413 - 154*I)*s^5 + O(s^6) - sage: m(y)^2 + m(y) + m(x) + 1/m(x) + sage: m(y)^2 + m(y) + m(x) + 1/m(x) # long time (8s) O(s^5) TESTS:: sage: TestSuite(J).run() - sage: TestSuite(K).run(max_runs=1024) # long time (5s) - sage: TestSuite(L).run(max_runs=64) # long time (10s) - sage: TestSuite(M).run(max_runs=32) # long time (30s) - sage: TestSuite(N).run(max_runs=64, skip = '_test_derivation') # long time (8s) - sage: TestSuite(O).run(max_runs=128, skip = '_test_derivation') # long time (8s) - + sage: TestSuite(K).run(max_runs=256) # long time (10s) + sage: TestSuite(L).run(max_runs=8) # long time (25s) + sage: TestSuite(M).run(max_runs=8) # long time (35s) + sage: TestSuite(N).run(max_runs=8, skip = '_test_derivation') # long time (15s) + sage: TestSuite(O).run() sage: TestSuite(R).run() - sage: TestSuite(S).run() # long time (3s) + sage: TestSuite(S).run() # long time (4s) Global function fields ---------------------- @@ -287,7 +286,7 @@ class FunctionField(Field): TESTS:: sage: K. = FunctionField(QQ) - sage: TestSuite(K).run() + sage: TestSuite(K).run() # long time (3s) """ Field.__init__(self, base_field, names=names, category=category) @@ -729,7 +728,7 @@ class FunctionField(Field): EXAMPLES:: sage: K. = FunctionField(QQ) - sage: TestSuite(K).run() # indirect doctest + sage: TestSuite(K).run() # indirect doctest, long time (3s) """ tester = self._tester(**options) S = tester.some_elements() @@ -1209,7 +1208,7 @@ class FunctionField_polymod(FunctionField): sage: K. = FunctionField(QQ); R. = K[] sage: L = K.extension(y^5 - x^3 - 3*x + x*y); L Function field in y defined by y^5 + x*y - x^3 - 3*x - sage: TestSuite(L).run() # long time + sage: TestSuite(L).run(max_runs=512) # long time (15s) We can set the variable name, which doesn't have to be y:: @@ -2888,7 +2887,8 @@ class FunctionField_simple(FunctionField_polymod): sage: F. = K.extension(Y^3 - x^2*(x^2 + x + 1)^2) sage: O = K.maximal_order() sage: pls = [O.ideal(x-QQbar(sqrt(c))).place() for c in [-2, -1, 0, 1, 2]] - sage: all(q.place_below() == p for p in pls for q in F.places_above(p)) + sage: all(q.place_below() == p # long time (4s) + ....: for p in pls for q in F.places_above(p)) True """ R = self.base_field() @@ -3091,7 +3091,7 @@ class FunctionField_global(FunctionField_simple): sage: K. = FunctionField(GF(4)); _. = K[] sage: L. = K.extension((1 - x)*Y^7 - x^3) - sage: L.gaps() + sage: L.gaps() # long time (6s) [1, 2, 3] or may define a trivial extension:: @@ -3111,7 +3111,7 @@ class FunctionField_global(FunctionField_simple): sage: K. = FunctionField(GF(5)); _. = K[] sage: L. = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2)) - sage: TestSuite(L).run() + sage: TestSuite(L).run() # long time (7s) """ FunctionField_polymod.__init__(self, polynomial, names) @@ -3807,7 +3807,7 @@ class RationalFunctionField(FunctionField): sage: K. = FunctionField(CC); K Rational function field in t over Complex Field with 53 bits of precision - sage: TestSuite(K).run() + sage: TestSuite(K).run() # long time (5s) sage: FunctionField(QQ[I], 'alpha') Rational function field in alpha over Number Field in I with defining polynomial x^2 + 1 with I = 1*I